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1 Introduction

Software-based systems play important roles in many areas of modern life, in-
cluding manufacturing, transportation, aerospace, and healthcare. However,
developing these complex systems, which are expected to be smart and reli-
able, is difficult, expensive, and error-prone. A key reason for this difficulty
is that the sheer complexity of many systems keeps growing, making it in-
creasingly difficult for human minds to form a comprehensive picture of all
relevant elements and behaviors of the system and its environment.

To mitigate this difficulty, research in the field of artificial intelligence (AI)
has been promoting a different approach to programming. Instead of having
a human engineer provide program logic for handling all possible inputs, al-
gorithms are given a set of training examples — typically (input, output) pairs
— from which they automatically extrapolate a software implementation. The
learned model is then able to generalize and produce desirable outputs, even
for previously-unseen inputs. Modern Al techniques are increasingly scalable
and efficient, and over the coming decade, Al-based systems will continue to
be deployed in more and more real-world settings.

A key difficulty, however, is that we are currently unable to reason about
Al systems. Indeed, we understand quite well the algorithms used for train-
ing them — this topic has been studied extensively — but, given a trained Al
system, we have no way to make rigorous claims about its behavior. In classi-
cal, imperative programing one can often look at and reason about the code,
write invariants, and prove certain properties of the system (either manually
or automatically). Because such code is written by humans, good software
engineering practices coupled with formal methods can ensure that it is also
guaranteed to perform as expected. In machine-learned systems, however, the
program amounts to a highly complex mathematical formula for transform-
ing inputs into outputs. Humans can barely parse the formulas defining these
systems, let alone reason about them. And off-the-shelf formal tools are so
far able to reason about only very small instances of such systems. Currently,
we have little recourse but to blindly trust that the training algorithms were
sufficiently “clever” and have produced a system that is correct. However, if
we are to use Al components in safety-critical systems, this situation is unsat-
isfactory.



2 Mission of the Center for Al Safety

The goal of the center for Al safety at Stanford is to play a leadership role in
addressing this critical situation:

The mission of the Stanford Center for Al Safety is to develop rig-
orous techniques for building safe and trustworthy Al systems and
establishing confidence in their behavior and robustness, thereby
facilitating their successful adoption in society.

3 Research Directions

Below, we outline some of the main research thrusts that we plan to pursue in
order to facilitate the goal of having safe and reliable Al-based systems.

3.1 Formal Techniques for Al Safety

The term formal methods refers to a broad set of techniques for using precise
mathematical modeling and reasoning to draw rigorous conclusions about
complex systems. Formal methods are regularly used to ensure the safety,
security, and robustness of conventional software and hardware systems, es-
pecially those that are used in safety-critical applications. A key area of focus
will be to develop and adapt formal methods for Al-based systems.

Formal specifications for systems with AI components. Al components are
present in many of today’s autonomous and intelligent systems and can in-
evitably affect the safety, assurance, fairness, and performance of these sys-
tems interacting with uncertain and dynamic environments. For instance,
autonomous cars use deep neural networks to classify and detect obstacles or
pedestrians on a road; Al techniques are used in healthcare for diagnosis and
in developing algorithms for medical devices; and domestic robots and assis-
tive devices leverage Al algorithms to safely interact with humans. To provide
any correctness guarantees for such systems, we first need to understand and
formalize the desired, unexpected, or malicious behaviors that could be pro-
duced by these systems. These properties may specify the functionality of the
inner Al components by defining their input-output behavior. Alternatively,
the properties may be at the level of the overall system that encompasses mul-
tiple Al components interacting with one another and with other decision-
making components. A challenging characteristic of such complex systems
is the interplay between hardware, software, and algorithms, which requires
analyzing safety of the Al-based systems at all levels. One goal of the center
is to formally specify desirable, unexpected, and malicious properties of these
systems.

Another goal is to understand the trade-offs between safety and other de-
sirable properties. For instance, an unmanned aircraft needs to decide be-
tween safely exploring the space and achieving other objectives such as flying
in a stable and efficient manner towards its destination. Similarly, an au-
tonomous car needs to arbitrate between the safety of the vehicle and the



comfort and efficiency of the trip. An assistive robot must balance the active
gathering of information about the intent of its user with the safety and ex-
pressiveness of its actions. We are exploring mathematical formalizations of
properties such as safety, fairness, reliability, robustness, explainability, and
efficiency, with the goal of developing formal techniques that are capable of
addressing these specifications.

Formal verification of systems with AI components Given a specificaion,
the next step is to develop tools and algorithms that can verify the correct-
ness of machine-learned software with respect to a specification. This means
checking that the specification holds for every possible input to the system.
The ability to do this opens the door to reasoning about machine-learned sys-
tems in many ways. For instance, we could ask: “given a machine-learned
program for driving a car, is it possible that if a person is crossing the street
ahead, the car will not decelerate?” The automatic algorithm will be required
to decide, for all possible situations involving a car and a pedestrian, whether
it is possible for the car not to decelerate. The result will be either a conclusion
that this is impossible, or a counter-example — a specific scenario — for which
the violation occurs. Another example in flight collision avoidance would be
“is it possible that two aircraft are dangerously close to each other, and yet the
system does not recommend to the pilots to steer away?”

As a first step in this direction, we have developed an algorithm, called
Reluplex, capable of proving properties of deep neural networks (DNNs) or
providing counter-examples if the properties fail to hold. The algorithm han-
dles DNINs with the Rectified Linear Unit (ReLU) activation function. A naive
approach to this problem is to analyze separately the two cases when the in-
put of each ReLU is negative (when the output of the ReLU is constant) and
non-negative (when the output is equal to the input), leading to an exponen-
tial explosion of combinations. Unlike previous attempts to verify DNNs, the
Reluplex algorithm is designed to delay or avoid this case analysis. Reluplex
can solve problems that are an order of magnitude larger than was previ-
ously possible. Ongoing work aims to further improve the scalability of the
Reluplex approach, to extend it to handle a broader class of activation func-
tions and network topologies, and to use it in collaboration with Al system
developers to verify real systems.

Analysis of adversarial robustness The trend of deploying DNNs as con-
trollers of key systems has raised questions regarding their security. Whereas
security issues in traditional software have been extensively studied (and still
dramatic issues are being discovered), the question of security for systems
with DNNSs is largely new, and could have serious implications unless ad-
dressed.

One notable example is that of adversarial examples, small adversarial per-
turbations applied to correctly-classified inputs that can “fool” a DNN into
misclassifying them. Many state-of-the-art DNNs have been shown to be sus-
ceptible to this phenomenon and many strategies have been developed to train
DNNSs that are more robust to adversarial examples.



Here, too, verification can provide an invaluable tool for improving net-
work security — in particular in the context of adversarial examples. One can
phrase the problem of finding adversarial examples as a verification problem,
and use a verification tool to prove that no adversarial examples exist for given
input domains and allowed amounts of perturbation. This makes it possi-
ble to measure the effectiveness of defensive techniques in an objective way
that does not depend on attack techniques currently in existence. We aim
to continue exploring general techniques that will aid in understanding and
addressing issues of adversarial robustness.

Automatic test-case generation Providing interesting and realistic test-cases
can be a challenging problem for systems with Al-based components. To-
day, most Al-based systems depend on large datasets for training and testing.
However, the size of the dataset alone is not a predictor of how well the sys-
tem performs. For instance, one might make a statement about safety of au-
tonomous cars based on the number of miles the car has driven. However, just
reaching a certain number of miles is not enough to ensure the safety of the
vehicle. For example, if all the miles are driven on the same highway, the car
has not seen more challenging driving scenarios such as difficult intersections
or roundabouts and would thus not be able to reason about these scenarios.
We would like to systematically test and validate such complex systems by
generating challenging scenarios to specifically test the AI components, the
input-output behavior of an Al component used as part of the more com-
plex system, and the interplay of the components with each other and with
the larger system. As part of our center, we plan to explore active learning
techniques along with formal methods to automatically generate interesting
test-cases that help with verification and validation of Al-based systems. In
addition, formal techniques have the potential to provide scalable model check-
ing algorithms that can help with verification of desired properties in large
state space systems such as autonomous cars interacting with complex envi-
ronments.

3.2 Learning and Control for AI Safety

Safe exploration and learning for better perception by Al systems A com-
mon characteristic of Al agents is their ability to update their models and
adapt to changes in the environment. This adaptibility requires actively or
passively gathering information about the world. For instance, a quadcoptor
might not know the exact weight of its payload, but by applying various con-
trol inputs (e.g. thrust, yaw, pitch, roll) it can gain confidence about this value.
However, such explorations could put the vehicle itself at the risk of becoming
unstable and could also lead to a violation of safety constraints. As part of the
center, we will explore situations in which safety and exploration objectives
can be in conflict with each other. Balancing exploration and exploitation has
been a long-standing problem in Al Our goal is to design systems that intelli-
gently and safely balance learning about the uncertainties of the environment
with exploitation of safety knowledge in order to develop better perception for



autonomous systems in a provably safe manner. This trade-off becomes even
more challenging in multi-agent settings, where multiple Al-based systems
must collaborate in a dynamic environment to safely explore the uncertainty
in the environment or in the autonomous agents themselves. In addition,
there is a strong link between these ideas of exploration and exploitation and
the coupling of perception and planning for autonomous agents. Active learn-
ing methods are commonly leveraged to efficiently gather information about
the environment for better perception and planning. We plan to study such
techniques for an efficient coupling of perception and planning through safe
learning.

Safe control of AI agents Controlling an agent safely requires reasoning
about the uncertain effects of the agent’s decisions on operational objectives
and safety constraints. The agent generally relies on imperfect sensor infor-
mation, which results in uncertainty about the current state of the world. The
effects of the agent’s actions are also difficult to predict, though we may be
able to learn probabilistic models from data or construct them from expert
judgment. Designers of Al systems often have to make challenging trade-offs
between safety and operational performance objectives. We will explore meth-
ods for building flexible models for sensors, dynamics, and objectives along
with computational techniques for using these models to generate safe con-
trol strategies for Al agents. Focusing on coupling perception and planning,
we believe safe and robust control and optimization techniques are required
to guarantee correctness of safety properties in uncertain and dynamic en-
vironments. We plan to combine our planning methods with safe learning
strategies that decide on safe and informative actions for intelligent and au-
tonomous agents. Through our center, we plan to bridge the gap between
various methods that in some way address safety specifications, such as ro-
bust and adaptive control, learning and optimization, and reactive synthesis
from logical specifications.

3.3 Transparency for Al Safety

Explainable, accountable, and fair AI As we have seen in recent years,
many Al-based systems have been under scrutiny due to lack of transparency
and explainability. Al-based systems can, for example, exaggerate social bias.
They can also provide outcomes that locally optimize a specific desirable ob-
jective, but that when generalized can result in unfair and unexpected out-
comes. Such outcomes can be due to issues such as reward misalignment,
reward hacking, and negative side effects. These issues are usually studied in
the setting of safety for Artificial General Intelligence (AGI). For example, we
can design an autonomous car that is rewarded for changing lanes and avoid-
ing collisions. However, the vehicle needs to balance between how much we
care about changing lanes immediately as opposed to keeping distance with
the vehicles in the destination lane. For specific reward functions, we might
observe conservative behavior where the autonomous vehicle never changes
lanes, or we might observe more risk-taking behavior where the autonomous



car changes lanes with not enough margins between the vehicles. The design
of reward functions is a fundamental element in transparency, explainability,
and safety of autonomous systems. As part of this center, we plan to focus
on specific concerns about transparency and explainability of Al systems, by
building algorithms that can provide reasons and explanations for their ac-
tions. We will look into understanding features of learning-based systems,
and robustness analysis of optimization based methods used in learning and
control.

In addition, we plan to study the safety and fairness implications of Al
systems that optimize a local reward function. For instance, local planning
by autonomous cars can result in efficient local interactions between the ve-
hicles. However, the larger implications of these interactions for the traffic
network must be addressed in parallel, e.g.,, how do autonomous cars af-
fect the congestion on roads? What routing algorithms do autonomous cars
need to use for efficient mixed-autonomy networks? What routing algorithms
should ride-sharing companies use to address fairness and safety issues in a
city? These issues are exacerbated when the systems are composed of deep
neural networks. As part of our center, we plan to study safety in the context
of fairness, accountability, and explainability for autonomous and intelligent
systems that are composed of learning-based components.

Diagnosis and repair for systems with Al components Although we will
explore better learning and control for autonomous intelligent systems, there
is no guarantee that Al agents will always be capable of arriving at a safe
solution. There are many situations in which a safe strategy is not feasible in
a particular environment. For instance, an autonomous vehicle might not be
able to decide on a safe controller when driving in complex environments, or
sometimes the safe strategy might be too conservative to allow the autonomous
vehicle to take any actions. One approach is to not even consider difficult
driving scenarios such as unprotected left turns or handling roundabouts. As
part of this center, we would like to systematically address this challenge. We
plan to develope algorithms that diagnose and understand potential failures
of autonomous and intelligent systems in complex environments. Using for-
mal techniques such as specification mining or desired property monitoring,
challenging scenarios can be detected. In addition, we will develop minimum
violation analyses for safety properties. These will enable us to produce a
minimal inconsistent subset of a given specification. The information about
this minimal set and the trade-offs between our objectives can help us design
potential repairs. Therefore, we plan to study minimal repairs required to fix
the potential failures detected and diagnosed in an online setting.



